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Finite quasi-quantum groups over abelian groups

Hua-Lin Huang, Gongxiang Liu, Yuping Yang, and Yu Ye

Abstract. This is a survey of some recent results on finite quasi-quantum
groups over abelian groups. The works rely heavily on a unified and explicit
formula of 3-cocycles on finite abelian groups. The formula reveals a use-
ful separation of the 3-cocycles into two types, namely the abelian and the
nonabelian ones. We give a brief summary to the classification of finite quasi-
quantum groups of diagonal type induced by abelian 3-cocycles, and mention
some initial advances of finite quasi-quantum groups of nondiagonal type in-
duced by nonabelian 3-cocycles. Some problems for further research are also
proposed.

1. Introduction

The classification problem of finite quasi-quantum groups (i.e., quasi-Hopf and
coquasi-Hopf algebras) is motivated mainly by the theory of finite tensor categories
[17] initiated by Etingof and Ostrik in the beginning of the century. As is clear
that the general classification problem is far out of reach, it is necessary to nar-
row the scope and focus first on some interesting classes of tensor categories and
quasi-quantum groups. In their pioneering work [13], Etingof and Gelaki proposed
to classify nonsemisimple pointed finite tensor categories. By pointed it is meant
that the simple objects are invertible. There are multifold reasons for this restric-
tion: first, this kind of reduction is standard and powerful in representation theory;
second, this class of tensor categories are essentially concrete, i.e., they admit quasi-
fiber functors and they can be realized as the module categories of finite-dimensional
elementary quasi-Hopf algebras by the Tannakian formalism [17]; third, this theory
is a natural generalization of the deep and beautiful theory of finite-dimensional
pointed Hopf algebras, see for example [1–3,9,19,22] among many other works.

Similar to the Hopf situation, the familar reduction procedures of degeneration
and deformation (or lifting), factorization and bosonization (or biproduct) are useful
in the quasi-Hopf situation as well. Let H be a finite-dimensional pointed coquasi-
Hopf algebra with associator Φ. By {Hn}n≥0 we denote its coradical filtration,
and

grH = H0 ⊕H1/H0 ⊕H2/H1 ⊕ · · ·
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the corresponding coradically graded coalgebra. Then naturally grH inherits from
H a graded coquasi-Hopf algebra structure and is called a degeneration of H. The
corresponding graded associator grΦ satisfies grΦ(ā, b̄, c̄) = 0 for all homogeneous
ā, b̄, c̄ ∈ grH unless they all lie in H0. In particular, H0 is a coquasi-Hopf subalge-
bra and it turns out to be (kG, grΦ) for G = G(H), the set of group-like elements
of H. We call a pointed coquasi-Hopf algebra H coradically graded if H ∼= grH
as coquasi-Hopf algebras. Thus, any finite-dimensional pointed coquasi-Hopf al-
gebra has a coradically graded degeneration. Conversely, one may lift or deform
coradically graded pointed coquasi-Hopf algebras to get general ones. Now let
H = ⊕i≥0Hi be a coradically graded pointed coquasi-Hopf algebra. Then H can
be factorized as the form R#kG where R is a connected graded Hopf algebra in a
twisted Yetter-Drinfeld category of G. This reduces the study of coradically graded
pointed coquasi-Hopf algebras to that of connected graded Hopf algebras in twisted
Yetter-Drinfeld categories of groups. One can recover the former by the latter via
the bosonization procedure.

To the best of our knowledge, so far most of the classification results on finite-
dimensional quasi-Hopf algebras are in the coradically graded case. In [13, 14],
Etingof and Gelaki obtained a series of classification results about graded elemen-
tary quasi-Hopf algebras over cyclic groups of prime order; in [15,18], they studied
graded elementary quasi-Hopf algebras over general cyclic groups and their lift-
ings. One main achievement of this series of works is a complete classification of
elementary quasi-Hopf algebras of rank 1. More importantly, a novel method of con-
structing genuine quasi-Hopf algebras (i.e., not twist equivalent to ordinary Hopf
algebras) from known pointed Hopf algebras is invented. Along the same vein, An-
giono classified in [5] finite-dimensional elementary quasi-Hopf algebras over cyclic
groups whose orders have no small prime divisors. The basic idea of Etingof and
Gelaki in [13–15] is embedding a genuine elementary quasi-Hopf algebras into an
elementary quasi-Hopf algebra, possibly up to twist equivalence. The crux of these
constructions is that there is a resolution for any given 3-cocycle on a cyclic group,
namely, for any 3-cocycle σ on Zn = 〈g|gn = 1〉, the pull-back π∗(σ) along the
natural projection π : Zn2 → Zn is a 3-coboundary on Zn2 .

The previous idea can be easily extended to a full generality theoretically.
However, there are several serious problems on the way of an explicit fulfillment.
Some results in this direction are included in [27,28,33].

(1) The first problem is to find a resolution, if possible, for any normalized 3-
cocycle on a finite group. This essentially lies in the cohomology theory of
finite groups and is naturally split into two separated, namely the abelian
and the nonabelian, cases. It is not surprised that the abelian case is
relatively easier to handle. By extending the idea of [30], we are able to
give a unified and explicit formula for a complete set of representatives
of normalized 3-cocycles on any finite abelian groups. These 3-cocycles
are further split into two types, that is the abelian and the nonabelian
cocycles, according to whether or not the simple objects of the associated
twisted Yetter-Drinfeld categories are all 1-dimensional. Moreover, we
show that a 3-cocycle is resolvable by a finite abelian group if and only if
it is abelian and we give an explicit resolution if this is indeed the case.
For nonabelian 3-cocycles, there is no chance to resolve them and the
associated twisted Yetter-Drinfeld categories are much more complicated.
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For nonabelian groups, even the formulas for normalized 3-cocycles are
not available yet.

(2) The second problem is to give a clear description of the Nichols algebras in

a twisted Yetter-Drinfeld category G

G
YDΦ. In case G and Φ are abelian, we

can transform them to those in the usual Yetter-Drinfeld category G
GYD by

a delicate manipulation, where G is a finite abelian group with canonical
projection π : G → G such that π∗(Φ) is a 3-coboundary on G. The
possibility of such a transformation is guaranteed since all the abelian 3-
cocycles are resolvable. Then by combining Heckenberger’s classification
of arithmetic root systems [22], we achieve a complete classification of

diagonal Nichols algebras with arithmetic root systems in G

G
YDΦ. When

the 3-cocycle Φ is nonabelian, the associated Nichols algebras become very
complicated. Though we know in most cases they are infinite-dimensional,
for the moment it is still far from getting a complete classification of the
finite-dimensional ones.

(3) The third is the generation problem. In the diagonal case, with the
transformation in (2) we can also reduce the problem of generation into
that of Nichols algebras in the usual Yetter-Drinfeld categories of fi-
nite abelian groups. With a help of Angiono’s result [6], we prove that
finite-dimensional pointed coquasi-Hopf algebras of diagonal type are gen-
erated by group-likes and skew-primitive elements. Then we obtain a
complete classification of finite-dimensional coradically graded pointed
coquasi-Hopf algebras of diagonal type in a conceptual way. In nondi-
agonal case, a satisfactory theory of Nichols algebras is not available yet.
So far only those Nichols algebras of semisimple twisted Yetter-Drinfeld
modules with few summands are touched. It turns out that if the num-
ber of summands is less than or equal to 2, then we are able to make a
connection from this to the diagonal case.

(4) The fourth problem is find a method to turn the conceptual classification
into an operable procedure of constructions. In the diagonal case, for any
given finite abelian group with fixed 3-cocycle and a compatible arithmetic
root system, the construction is essentially a computational problem of
linear congruence equations. We find two efficient ways, for most cases,
to generate series of new genuine finite-dimensional pointed coquasi-Hopf
algebras. In the nondiagonal case, basically we know nothing except very
few sporadic examples.

There are also some other approaches to finite quasi-quantum groups and
pointed finite tensor categories. For example, in [7,8] Angiono, Galindo and Pereira
studied the de-equivariantization of the category of comodules over a Hopf algebra
and characterized pointed finite tensor categories over abelian groups constructed
as de-equivariantizations of tensor categories of comodules over finite-dimensional
pointed Hopf algebras. Some results obtained in ibid. are close to ours in [27,28].
Specifically, abelian cocycles are called trivializable in the paper [7] by Angiono-
Galindo, where the same description on the commutativity of the twisted Drinfeld
double, and also an explicit characterization using results by Breen on cohomology
[11] are found. In the same work the result about generation in degree one is in-
cluded as well as a classification result in terms of de-equivariantizations when the
3-cocycle is abelian. In our earlier works [25, 26], we proposed an approach via
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quivers and representations. In particular, a Drozd trichotomy of graded pointed
finite tensor categories was obtained in [29,31] by the well known theory of repre-
sentation types of algebras. Due to the lack of space, we do not include any more
details of these aspects.

The rest of the paper is organized as follows. In Section 2, we recall the for-
mulas of normalized 3-cocycles on finite abelian groups and the application to a
classification of braided Gr-categories. Section 3 is devoted to a brief summary
of finite quasi-quantum groups of diagonal type. In Section 4, we present a first
attempt to the classification problem of finite quasi-quantum groups of nondiagonal
type. Finally, in Section 5 we provide some further research problems. Throughout
the paper, k is an algebraically closed field with characteristic zero and all linear
spaces are over k. In accordance with our previous works [25,26,29,31], we only
work on pointed coquasi-Hopf algebras. By taking linear dual, one has the version
for elementary quasi-Hopf algebras. All the results mentioned in this paper can be
found in [27,28,32,33]. In most cases, technical computations and long proofs are
omitted. The interested reader is referred to ibid. for details.

2. Normalized cocycles on finite abelian groups and braided
Gr-categories

In this section, we will present unified formulas for normalized cocycles of all
degrees on finite abelian groups. As applications of the unified formulas of normal-
ized 3-cocycles, we provide an explicit description of braided Gr-categories which
are a simplest class of pointed finite tensor categories. For later applications, we
also recall the definition of abelian 3-cocycles and their resolutions. The main re-
sults are from [28,30,32]. Throughout this section, we will use freely the concepts
and notations about group cohomology in the book [35].

2.1. Normalized cocycles on finite abelian groups. Let G be a group
and (B•, ∂•) be its normalized bar resolution. Applying HomZG(−, k∗) one gets a
complex (B∗

• , ∂
∗
•). Denote the group of normalized k-cocycles by Zk(G, k∗), which

is Ker ∂∗
k . In general, it is hard to determine Zn(G, k∗) directly as the normalized

bar resolution is far too large.
Our approach of formulating the normalized cocycles is straightforward and

elementary. First we construct a Koszul-like resolution of a finite abelian group G
by tensoring the minimal resolutions of cyclic factors of G and give a complete set
of representatives of cocycles for this resolution. Then we construct a chain map
from the normalized bar resolution to this Koszul-like resolution. Finally we get
the desired explicit and unified formulas of normalized cocycles on G by pulling
back those on the Koszul-like resolution along the chain map.

In the following we record only the formulas of normalized cocycles. The inter-
ested reader is referred to [32] for more details. Without loss of generality, we can
assume that G = Zm1

× · · · × Zmn
where mi|mi+1 for all 1 ≤ i ≤ n− 1. Let gi be

a fixed generator of Zmi
, 1 ≤ i ≤ n. Let α = (α1, . . . , αk) and αu = (αu1, . . . , αun)

for 1 ≤ u ≤ k, where each αij ∈ [0,mj) and is viewed as an integer modulo mj for
all 1 ≤ i ≤ k. For αu, 1 ≤ u ≤ k, we denote

gαu = gαu1
1 · · · gαun

n .
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For each positive integer m, fix a primitive m-th root of unity ζm. Let 1 ≤ a < b ≤
k, 1 ≤ r ≤ n be integers. Then for a fixed α we can define

ηαr,[a,b] :=

{
[
αbr+αb−1,r

mr
] · · · [αa+1,r+αar

mr
], b− a odd;

[
αbr+αb−1,r

mr
] · · · [αa+2,r+αa+1,r

mr
]αar, b− a even.

Here by [ st ] we denote the integer part of s
t for any positive integers s and t. Let

Rl := {(r1, r2, · · · , rl)|1 ≤ r1 < r2 < · · · < rl ≤ n},

Λl := {(λ1, λ2, · · · , λl)|λ1 + λ2 + · · ·λl = k, λ1 odd, λi ≥ 1 for 1 ≤ i ≤ l}.
Let Γ be the set of all sequences of the form

(a
r
λ1
1 ···rλl

l

)(r1,··· ,rl)∈Rl, (λ1,··· ,λl)∈Λl, 1≤l≤k

such that 0 ≤ a
r
λ1
1 ···rλl

l

≤ mr1 for (r1, · · · , rl) ∈ Rl, (λ1, · · · , λl) ∈ Λl, 1 ≤ l ≤ k.

Then we have the following

Proposition 2.1. [32, Corollary 2.5] For each sequence a =
(a

r
λ1
1 ···rλl

l

)(r1,··· ,rl)∈Rl, (λ1,··· ,λl)∈Λl, 1≤l≤k in Γ, we can define a k-cochains ω ∈
HomZG(Bk, k

∗) by

(2.1) ωa([g
α1 , . . . , gαk ])

=
k∏

l=1

∏
(r1, · · · , rl) ∈ Rl

(λ1, · · · , λl) ∈ Λl

ζ
(−1)

∑
1≤i<j≤l λiλj ηα

r1,[a1,b1]···η
α
rl,[al,bl]

a
r
λ1
1 ···rλl

l
mr1

where au =
∑l

i=u+1 λi + 1, bu =
∑l

i=u λi for (λ1, · · · , λl) ∈ Λl, 1 ≤ u ≤ l. The
set {ωa|a ∈ Γ} is a complete set of representatives of k-cocycles of the complex
(B∗

• , ∂
∗
•).

2.2. Braided Gr-categories. The monoidal category of finite dimensional
vector spaces graded by a group G, with the usual tensor product and associativity
constraint given by a 3-cocycle ω is denoted by VecωG . Such a monoidal category
is called a linear Gr-category. The terminology goes back to Hoàng Xuân Śınh
[24], a student of Grothendieck. The aim of this subsection is to give a complete
description to all braided linear Gr-categories with a help of the explicit formulas
of normalized 3-cocycles.

Recall that the category VecG of finite-dimensional G-graded vector spaces has
simple objects {Sg|g ∈ G} where (Sg)h = δg,hk, ∀h ∈ G. The tensor product
is given by Sg ⊗ Sh = Sgh, and S1 (1 is the identity of G) is the unit object.
Without loss of generality we may assume that the left and right unit constraints are
identities. If a is an associativity constraint on VecG, then it is given by aSf ,Sg ,Sh

=
ω(f, g, h) id, where ω : G×G×G → k∗ is a function. The pentagon axiom and the
triangle axiom give

ω(ef, g, h)ω(e, f, gh) = ω(e, f, g)ω(e, fg, h)ω(f, g, h),

ω(f, 1, g) = 1,

which say exactly that ω is a normalized 3-cocycle onG.Note that cohomologous co-
cycles define equivalent monoidal structures, therefore the classification of monoidal
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structures on VecG is equivalent to determining a complete set of representatives
of normalized 3-cocycles on G.

Keep the notations of Subsection 2.1. One can easily give the explicit formulas
of normalized 3-cocycle on G by (2.1). Define A to be the set of all sequences like

(2.2) (a1, . . . , al, . . . , an, a12, . . . , aij , . . . , an−1,n, a123, . . . , arst, . . . , an−2,n−1,n)

such that 0 ≤ al < ml, 0 ≤ aij < mi, 0 ≤ arst < mr for 1 ≤ l ≤ n, 1 ≤ i < j ≤
n, 1 ≤ r < s < t ≤ n where aij and arst are ordered by the lexicographic order.
In the following, the sequence (2.2) is denoted by a for short. In the special case
k = 3, if we abbreviate ar3 , ar1s2 and ar1s1t1 in formula (2.1) by ar, ars and arst
respectively, then (2.1) becomes

Φa : B3 −→ k
∗

[gi11 · · · ginn , gj11 · · · gjnn , gk1
1 · · · gkn

n ]

�→
n∏

r=1

ζ
arir [

jr+kr
mr

]

mr

∏

1≤r<s≤n

ζ
arskr [

is+js
ms

]

mr

∏

1≤r<s<t≤n

ζ−arstkrjsit
mr

(2.3)

where 0 ≤ ar, ars, arst < mr. This is a complete set of representatives of normalized
3-cocycles on G.

Now we consider the braided structures on a linear Gr-category VecωG . Recall
that a braiding in VecωG is a commutativity constraint c : ⊗ → ⊗op satisfying the
hexagon axiom. Note that c is given by cSx,Sy

= R(x, y) id, where R : G×G → k∗

is a function, and the hexagon axiom of c says that

(2.4)
R(xy, z)

R(x, z)R(y, z)

ω(x, z, y)

ω(x, y, z)ω(z, x, y)
= 1 =

R(x, yz)

R(x, y)R(x, z)

ω(x, y, z)ω(y, z, x)

ω(y, x, z)

for all x, y, z ∈ G.
In other words, R is a quasi-bicharacter of G with respect to ω. Therefore,

the classification of braidings in VecωG is equivalent to determining all the quasi-
bicharacters of G with respect to ω. Clearly, any quasi-bicharacter R is uniquely
determined by the following values:

rij := R(gi, gj), for all 1 ≤ i, j ≤ n.

Proposition 2.2. [32, Proposition 3.2] Let rij ∈ k∗ for 1 ≤ i, j ≤ n. Then
there is a quasi-bicharacter R with respect to ω satisfying R(gi, gj) = rij if and
only if the following equations are satisfied:

rmi

ii = ζai
mi

= ζ−ai
mi

, for 1 ≤ i ≤ n,

rmi
ij = rmi

ji = 1, aij = 0, for 1 ≤ i < j ≤ n,

arst = 0, for 1 ≤ r < s < t ≤ n.

2.3. Abelian 3-cocycles. In order to define abelian 3-cocycles, we need to
recall first twisted quantum doubles [12]. By definition, the twisted quantum dou-
ble DΦ(G) of G with respect to the 3-cocycle Φ over G is the semisimple quasi-Hopf
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algebra with underlying vector space (kG)∗ ⊗ kG in which multiplication, comulti-
plication Δ, associator φ, counit ε, antipode S, α and β are given by

(e(g)⊗ x)(e(h)⊗ y) = θg(x, y)δg,he(g)⊗ xy,

Δ(e(g)⊗ x) =
∑
hk=g

γx(h, k)e(h)⊗ x⊗ e(k)⊗ x,

φ =
∑

g,h,k∈G

Φ(g, h, k)−1e(g)⊗ 1⊗ e(h)⊗ 1⊗ e(k)⊗ 1,

S(e(g)⊗ x) = θg−1(x, x−1)−1γx(g, g
−1)−1e(g−1)⊗ x−1,

ε(e(g)⊗ x) = δg,1, α = 1, β =
∑
g∈G

Φ(g, g−1, g)e(g)⊗ 1,

where {e(g)|g ∈ G} is the dual basis of {g|g ∈ G}, δx,y is the Kronecker delta, and

θg(x, y) =
Φ(g, x, y)Φ(x, y, g)

Φ(x, g, y)
,

γg(x, y) =
Φ(x, y, g)Φ(g, x, y)

Φ(x, g, y)

for any x, y, g ∈ G.

Definition 2.3. A 3-cocycle Φ over G is called abelian if DΦ(G) is a commu-
tative algebra.

With a help of our explicit formulas of normalized 3-cocycles, one can easily
single out the abelian ones. Let G be a finite abelian group. So G ∼= Zm1

×· · ·×Zmn

with mj ∈ N for 1 ≤ j ≤ n and mi|mi+1 for all 1 ≤ i ≤ n− 1. Let gi be a generator
of Zmi

. Suppose Φ is a normalized 3-cocycle on G. Thanks to (2.3), we may assume
that Φ = Φa for some a ∈ A. Then we have the following numerical description of
abelian 3-cocycles.

Proposition 2.4. The 3-cocycle Φa is abelian if and only if arst = 0 for all
1 ≤ r < s < t ≤ n.

Proof. “⇐:” If all arst = 0, then by (2.3) it is not hard to find that

Φa(x, y, z) = Φa(x, z, y)

for x, y, z ∈ G. From this, we can find that

θg(x, y) = θg(y, x)

for g, x, y ∈ G, which implies that DΦa(G) is commutative.
“⇒:” If arst �= 0 for some r < s < t. Through direct computations, we have

θgr
(gs, gt) = 1, θgr

(gt, gs) = ζ−arst
mr

.

This implies that

(e(gr)⊗ gs)(e(gr)⊗ gt) �= (e(gr)⊗ gt)(e(gr)⊗ gs).

�
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2.4. Resolution. Let G = Zm1
× · · · × Zmn

as before and Φa be an abelian
3-cocycle of G. Then Φa can be “resolved” in a slightly bigger abelian group G.
More precisely, take G = Zm1

× · · · × Zmn
for mi = m2

i (1 ≤ i ≤ n). As before, let
gi (resp. gi) be a generator of Zmi

(resp. Zmi
) for 1 ≤ i ≤ n. Using such notations,

we have a canonical group epimorphism:

π : G → G, gi �→ gi (1 ≤ i ≤ n).

By pulling back the 3-cocycles on G along π, we get 3-cocycles

π∗(Φa) : G×G×G → k∗, (g, h, z) �→ Φa(π(g), π(h), π(z)), g, h, z ∈ G

onG. Then π∗(Φa) is in fact a coboundary. To see this clearly, consider the following
map
(2.5)

Ja : G×G → k∗; (gx1
1 · · · gxn

n , gy1

1 · · · gyn
n ) �→

n∏
l=1

ζ
alxl(yl−y′

l)
ml

∏
1≤s<t≤n

ζ
astxt(ys−y′

s)
msmt

where y′i is the remainder of yi divided by mi for 1 ≤ i ≤ n. Here for simple, we

just take ζt = e
2πi
t for t ∈ N. Thus, we have

Proposition 2.5. The differential of Ja equals to π∗(Φa), that is

∂(Ja) = π∗(Φa).

Proof.

∂(Ja)(g
i1
1 · · · ginn , gj11 · · · gjnn , gk1

1 · · · gkn
n )

=
Ja(g

j1
1 · · · gjnn , gk1

1 · · · gkn
n )Ja(g

i1
1 · · · ginn , gj1+k1

1 · · · gjn+kn
n )

Ja(g
i1+j1
1 · · · gin+jn

n , gk1
1 · · · gkn

n )Ja(g
i1
1 · · · ginn , gj11 · · · gjnn )

=
∏n

l=1 ζ
aljl(kl−k′

l)
ml

∏
1≤s<t≤n ζ

astjt(ks−k′
s)

msmt

∏n
l=1 ζ

alil(jl+kl−(jl+kl)
′)

ml

∏
1≤s<t≤n ζ

astit(js+ks−(js+ks)′)
msmt

∏n
l=1

ζ
al(il+jl)(kl−k′

l
)

ml

∏
1≤s<t≤n ζ

ast(it+jt)(ks−k′
s)

msmt

∏n
l=1

ζ
alil(jl−j′

l
)

ml

∏
1≤s<t≤n ζ

astit(js−j′s)
msmt

=

n∏
l=1

ζ
alil(j

′
l+k′

l−(jl+kl)
′)

ml

∏
1≤s<t≤n

ζ
astit(j

′
s+k′

s−(js+ks)
′)

msmt

=

n∏
l=1

ζ
ali

′
l[

j′l+k′
l

ml
]

ml

∏
1≤s<t≤n

ζ
asti

′
t[

j′s+k′
s

ms
]

mt

= π∗(Φa)(g
i1
1 · · · ginn , gj11 · · · gjnn , gk1

1 · · · gkn
n ).

�

However, there is no chance to resolve non-abelian 3-cocycles on bigger abelian
groups.

Proposition 2.6. [27, Proposition 3.17] Let Φa be a non-abelian 3-cocycle on
G and G be an arbitrary finite abelian group with a group epimorphism π : G � G.
Then π∗(Φa) is not a coboundary on G.

In other words, for a 3-cocycle on a finite abelian group, it is abelian if and
only if it is resolvable. We remark that abelian 3-cocycles are called trivializable in
[7,11] and some similar equivalent conditions are provided therein.
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3. Finite quasi-quantum groups of diagonal type: A brief summary

In this section, we give a brief summary on a classification of finite-dimensional
coradically graded pointed coquasi-Hopf algebras of diagonal type. The results
presented here are included in [27,28].

Let (M,Φ) be a finite-dimensional coradically graded pointed coquasi-Hopf
algebra. Recall from Introduction thatM can be factorized as R#kG with G a finite
group and R a Hopf algebra in the twisted Yetter-Drinfeld category G

G
YDΦ. If G is

abelian, then (kG,Φ) is completely clear by Section 2. So the study of M is reduced
to that of R. In accordance with the theory of finite-dimensional pointed Hopf
algebras, the key here is the Nichols algebras in twisted Yetter-Drinfeld categories
of finite abelian groups. We call the Nichols algebra B(V ) of an object V ∈ G

G
YDΦ is

of diagonal type, if V itself is of diagonal type (that is, a direct sum of 1-dimensional

simple objects in G

G
YDΦ.) Similarly, we call M diagonal if R is diagonal in G

G
YDΦ.

Thanks to Subsection 2.3, all simple objects of G

G
YDΦ are 1-dimensional if and only

if both G and Φ are abelian. Moreover, in this case the Nichols algebra B(V ) of

V ∈ G

G
YDΦ can be transformed to a usual Nichols algebra as the abelian 3-cocycle

Φ is resolvable. With this definite connection, the theory of finite-dimensional
pointed Hopf algebras over abelian groups can be applied to our quasi situation.

Thus, in order to classify finite-dimensional coradically graded pointed coquasi-
Hopf algebras of diagonal type, the main task is to give a classification of the Nichols
algebras of diagonal type with arithmetic root system in G

G
YDΦ. The idea to realize

our purpose consists of five steps. Firstly, we can assume that the support group
of B(V ) is G, and from this assumption we can prove that Φ must be an abelian
3-cocycle over G. Secondly, we will develop a technique to change the base group
from G to a bigger one G together with a group epimorphism π : G → G. Thirdly,
we will show that any Nichols algebra B(V ) in G

G
YDΦ is isomorphic to a Nichols

algebra in G
GYDπ∗(Φ), which is thus twist equivalent to a usual Nichols algebra by

Proposition 2.5. Fourthly, we want to get a return ticket, that is, we will give a

sufficient and necessary condition to determine when a Nichols algebra in G

G
YDπ∗(Φ)

is isomorphic to one in G

G
YDΦ. Finally, combining these results and Heckenberger’s

classification of arithmetic root systems, we obtain the classification of Nichols
algebras of diagonal type with arithmetic root system in G

G
YDΦ.

3.1. Yetter-Drinfeld modules over (kG,Φ) and Nichols algebras. There
are general definitions of Yetter-Drinfeld modules over coquasi-Hopf algebras and
Nichols algebras of braided tensor categories. For our purpose, it is enough to recall
only the definitions of Yetter-Drinfeld modules over coquasi-Hopf algebras of form
(kG,Φ) with G an abelian group and Nichols algebra in G

G
YDΦ.

Assume that V is a left kG-comudule with comodule structure map δL : V →
kG ⊗ V . Define gV := {v ∈ V |δL(v) = g ⊗ v} and thus V =

⊕
g∈G

gV. Here we
call g the degree of the elements in gV and denote by deg v = g for v ∈ gV . For the
3-cocycle Φ on G and any g ∈ G, define

(3.1) Φ̃g : G×G → k
∗, (e, f) �→ Φ(g, e, f)Φ(e, f, g)

Φ(e, g, f)
.

Direct computation shows that

Φ̃g ∈ Z
2(G, k∗).
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Definition 3.1. A left kG-comudule V is a left-left Yetter-Drinfeld module
over (kG,Φ) if each gV is a projective G-representation with respect to the 2-

cocycle Φ̃g, namely the G-action � on gV satisfies

(3.2) e � (f � v) = Φ̃g(e, f)(ef) � v, ∀e, f ∈ G, v ∈ gV.

The category of left-left Yetter-Drinfeld modules is denoted by G

G
YDΦ. Sim-

ilarly, one can define left-right, right-left and right-right Yetter-Drinfeld modules
over (kG,Φ). As the familiar Hopf case, G

G
YDΦ is a braided tensor category. More

precisely, for any M,N ∈ G

G
YDΦ, the structure maps of M ⊗ N as a left-left

Yetter-Drinfeld module are given by

(3.3) δL(mg ⊗ nh) := gh⊗mg ⊗ nh, x � (mg ⊗ nh) := Φ̃x(g, h)x � mg ⊗ x � nh

for all x, g, h ∈ G and mg ∈ gM, nh ∈ hN . The associativity constraint a and the

braiding c of G

G
YDΦ are given respectively by

a((ue ⊗ vf )⊗ wg) = Φ(e, f, g)−1ue ⊗ (vf ⊗ wg)(3.4)

c(ue ⊗ vf ) = e � vf ⊗ ue(3.5)

for all e, f, g ∈ G, ue ∈ eU, vf ∈ fV , wg ∈ gW and U, V,W ∈ G

G
YDΦ.

Nichols algebras can be defined by various equivalent ways, see for example [2].
Here we adopt the defining method in terms of the universal property. Roughly,
Nichols algebras are the analogue of the usual symmetric algebras in more general
braided tensor categories.

Let V be a nonzero object in G

G
YDΦ. By TΦ(V ) we denote the tensor algebra

in G

G
YDΦ generated freely by V. It is clear that TΦ(V ) is isomorphic to

⊕
n≥0 V

⊗−→n

as a linear space, where V ⊗−→n means

(· · · ((︸ ︷︷ ︸
n−1

V ⊗ V )⊗ V ) · · · ⊗ V ).

This induces a natural N-graded structure on TΦ(V ). Define a comultiplication on
TΦ(V ) by Δ(X) = X ⊗ 1+ 1⊗X, ∀X ∈ V, a counit by ε(X) = 0, and an antipode
by S(X) = −X. These provide a graded Hopf algebra structure on TΦ(V ) in the
braided tensor category G

G
YDΦ.

Definition 3.2. The Nichols algebra B(V ) of V is defined to be the quotient
Hopf algebra TΦ(V )/I in G

G
YDΦ, where I is the unique maximal graded Hopf ideal

generated by homogeneous elements of degree greater than or equal to 2.

To stress that our Nichols algebras may be nonassociative in some occasions, we
will call an associative Nichols algebra, e.g. B(V ) ∈ G

G
YD, a usual Nichols algebra.

The following definition is used widely in the rest of this paper.

Definition 3.3. Let V ∈ G

G
YDΦ be a Yetter-Drinfeld module of diagonal type

and {Xi|1 ≤ i ≤ n} be a standard basis of V, and {gi|1 ≤ i ≤ n} be the correspond-
ing degrees, that is δL(Xi) = gi ⊗ Xi for 1 ≤ i ≤ n. Then we call the subgroup
G′ = 〈g1, · · · , gn〉 generated by g1, . . . , gn the support group of V , which is denoted
by GV .

It is obvious that the definition does not depend on the choices of the standard
bases and

GV = GB(V ) = GTΦ(V ).
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The twisting process for coquasi-Hopf algebras can be transferred to Nichols alge-
bras directly. In fact, let (V, �, δL) ∈ G

G
YDΦ, and J a 2-cochain of G. Then we can

define a new action �J of G over V by

(3.6) g �J X =
J(g, x)

J(x, g)
g � X

for X ∈ V and g ∈ G. We denote (V, �J , δL) by V J and by definition we have
V J ∈ G

G
YDΦ∗∂(J). Moreover there is a tensor equivalence (FJ , ϕ0, ϕ2) :

G

G
YDΦ →

G

G
YDΦ∗∂(J) which takes V to V J and

ϕ2(U, V ) : (U ⊗ V )J → UJ ⊗ V J , Y ⊗ Z �→ J(y, z)−1Y ⊗ Z

for Y ∈ U, Z ∈ V.
Let B(V ) be a usual Nichols algebra in G

G
YD, then it is clear that B(V )J is a

Hopf algebra in G

G
YD∂J with multiplication ◦ determined by

(3.7) X ◦ Y = J(x, y)XY

for all homogenous elements X,Y ∈ B(V ), here x = degX, y = deg Y. Using the
same terminology as (co)quasi-Hopf algebras, we call B(V ) and B(V )J are twist
equivalent. The following fact is obvious, but important for our exposition.

Lemma 3.4. The twisting B(V )J of B(V ) is a Nichols algebra in G

G
YD∂J and

B(V )J ∼= B(V J ).

3.2. Pointed coquasi-Hopf algebras and related notions. Recall that
a coquasi-Hopf algebra M is said to be pointed if the underlying coalgebra is so.
Given a pointed coquasi-Hopf algebra (M,Δ, ε,M, μ,Φ,S, α, β), let {Mn}n≥0 be its
coradical filtration, and

grM = M0 ⊕M1/M0 ⊕M2/M1 ⊕ · · ·
the corresponding coradically graded coalgebra. Then grM is a coradically graded
coquasi-Hopf algebra. The corresponding graded associator grΦ satisfies
grΦ(ā, b̄, c̄) = 0 for all homogeneous ā, b̄, c̄ ∈ grM unless they all lie in M0. Similar
condition holds for grα and grβ. In particular, M0 is a coquasi-Hopf subalgebra
and it turns out to be the coquasi-Hopf algebra (kG, grΦ) for G = G(M), the set of
group-like elements of M. We call a pointed Majid algebra M graded if M ∼= grM
as Majid algebras.

Definition 3.5. Let (M,Δ, ε,M, μ,Φ,S, α, β) be a coquasi-Hopf algebra. A
convolution-invertible linear map

J : M⊗M → k

is called a twisting (or gauge transformation) on M if

J(h, 1) = ε(h) = J(1, h)

for all h ∈ M.

Given a coquasi-Hopf algebra M and a twisting J, then one can construct a new
coquasi-Hopf algebra M

J as follows: MJ = M as a coalgebra and the multiplication
“ ◦ ” on MJ is given by

(3.8) a ◦ b := J(a1, b1)a2b2J
−1(a3, b3)
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for all a, b ∈ M. The associator ΦJ and the quasi-antipode (SJ , αJ , βJ) are given
as:

ΦJ (a, b, c) = J(b1, c1)J(a1, b2c2)Φ(a2, b3, c3)J
−1(a3b4, c4)J

−1(a4, b5),

SJ = S, αJ(a) = J−1(S(a1), a3)α(a2), βJ(a) = J(a1,S(a3))β(a2)
for all a, b, c ∈ M.

Definition 3.6. Two coquasi-Hopf algebras M1 and M2 are called twist equiv-
alent if there is a twisting J on M1 such that MJ

1
∼= M2 as coquasi-Hopf algebras.

Denote M1 ∼ M2 if M1 is twist equivalent to M2. We call a coquasi-Hopf algebra
M genuine if it is not twist equivalent to a Hopf algebra.

Now suppose M =
∑

i≥0 Mi is a coradically graded pointed coquasi-Hopf alge-
bra. Let π : M → M0 be the canonical projection. Then M is a kG-bicomodule
naturally via

δL := (π ⊗ id)Δ, δR := (id⊗π)Δ.

Thus there is a G-bigrading on M, that is,

M =
⊕
g,h∈G

g
M

h

where g
M

h = {m ∈ M|δL(m) = g ⊗ m, δR(m) = m ⊗ h}. As a convention,
we only deal with homogeneous elements with respect to this G-bigrading in this
subsection. For example, whenever we write Δ(X) = X1 ⊗ X2, all X,X1, X2 are
assumed homogeneous, and for any capital X ∈ gMh, we use its lowercase x to
denote gh−1.

Define the coinvariant subalgebra of M by

R := {m ∈ M|(id⊗π)Δ(m) = m⊗ 1}.
Clearly 1 ∈ R. There is a (kG,Φ)-action on R via

(3.9) f � X :=
Φ(fg, f−1, f)

Φ(f, f−1, f)
(f ·X) · f−1

for all f, g ∈ G and X ∈ gR. Here · is the multiplication in M. Then (R, δL,�) is
a left-left Yetter-Drinfeld module over (kG,Φ).

M : R⊗R → R, (X,Y ) �→ XY := X · Y ;

u : k → R, λ �→ λ1;

ΔR : R → R⊗R, X �→ Φ(x1, x2, x
−1
2 )X1 · x−1

2 ⊗X2;

εR : R → k, εR := ε|R;

SR : R → R, X �→ 1
Φ(x,x−1,x)x · S(X).

Then it is routine to verify that (R,M, u,ΔR, εR,SR) is a Hopf algebra in G

G
YDΦ.

Conversely, let H be a Hopf algebra in G

G
YDΦ. Since H is a left G-comodule,

there is a G-grading on H:

H =
⊕
x∈G

xH

where xH = {X ∈ H|δL(X) = x ⊗ X}. As before, we only need to deal with G-
homogeneous elements. As a convention, homogeneous elements in H are denoted
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by capital letters, say X,Y, Z, . . . , and the associated degrees are denoted by their
lower cases, say x, y, z, . . . .

For our purpose, we also assume that H is N-graded with H0 = k. If X ∈ Hn,
then we say that X has length n. Moreover, we assume that both gradings are
compatible in the sense that

H =
⊕
g∈G

gH =
⊕
g∈G

⊕
n∈N

gHn.

For example, the Hopf algebra R in G

G
YDΦ considered above satisfies these assump-

tions as R =
⊕

i∈N
Ri is coradically graded. In this case, we call dimR1 the rank

of R and M. For any X ∈ H, we write its comultiplication as

ΔH(X) = X(1) ⊗X(2).

The following bosonization formulas come from [34], a more general version for
coquasi-bialgebras can be found in [10].

Lemma 3.7. [34, Proposition 3.3] Keep the assumptions on H as above. Define
on H ⊗ kG a product by

(3.10) (X ⊗ g)(Y ⊗ h) =
Φ(xg, y, h)Φ(x, y, g)

Φ(x, g, y)Φ(xy, g, h)
X(g � Y )⊗ gh,

and a coproduct by

(3.11) Δ(X ⊗ g) = Φ(x(1), x(2), g)
−1(X(1) ⊗ x(2)g)⊗ (X(2) ⊗ g).

Then H⊗kG becomes a graded coquasi-Hopf algebra with a quasi-antipode (S, α, β)
given by

S(X ⊗ g) = Φ(g−1,g,g−1)
Φ(x−1g−1,xg,g−1)Φ(x,g,g−1) (1⊗ x−1g−1)(SH(X)⊗ 1),(3.12)

α(1⊗ g) = 1, α(X ⊗ g) = 0,(3.13)

β(1⊗ g) = Φ(g, g−1, g)−1, β(X ⊗ g) = 0,(3.14)

here g, h ∈ G and X,Y are homogeneous elements of length ≥ 1.

Finally, we give the definition of connected pointed coquasi-Hopf algebras.

Definition 3.8. Suppose M is a pointed coquasi-Hopf algebra and R is the
coinvariant subalgebra of gr(M), then we say that M is connected if G(M) = GR,
where GR is the support group of R.

3.3. Arithmetic root systems and generalized Dynkin diagrams.
Arithmetic root systems are invariants of Nichols algebras of diagonal type with

certain finiteness property. A complete classification of arithmetic root systems
was given by Heckenberger [22]. This is a crucial ingredient for the classification
program of finite-dimensional pointed Hopf algebras, and turns out to be equally
important in the broader situation of pointed coquasi-Hopf algebras.

Suppose B(V ) is a usual Nichols algebra of diagonal type in G

G
YD. Let {Xi|1 ≤

i ≤ n} be a stardard basis of V with δl(Xi) = hi ⊗ Xi. The structure constants
of B(V ) are {qij |1 ≤ i, j ≤ n} such that hi � Xj = qijXj . Let E = {ei|1 ≤
i ≤ d} be a canonical basis of Zn, and χ be a bicharacter of Zn determined
by χ(ei, ej) = qij . As defined in [19, Sec.3], �+(B(V )) is the set of degrees of
the (restricted) Poincare-Birkhoff-Witt generators counted with multiplicities and
�(B(V )) := �+(B(V ))

⋃
− �+ (B(V )), which is called the root system of B(V ).
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Moreover, the triple (�(B(V )), χ, E)) is called an arithmetic root system of B(V ) if
the corresponding Weyl groupoid Wχ,E is full and finite. In this case, we denote this
arithmetic root system by �(B(V ))χ,E for brevity. If there is another arithmetic
root system �χ′,E′ , and an isomorphism τ : Zn → Zn such that

τ (E) = E′, χ′(τ (e), τ (e)) = χ(e, e),

χ′(τ (e1), τ (e2))χ
′(τ (e2), τ (e1)) = χ(e1, e2)χ

′(e2, e1),

then we say that �χ,E and �χ′,E′ are twist equivalent.
Generalized Dynkin diagrams are invariants of arithmetic root systems, and

they can determine arithmetic root systems up to twist equivalence.

Definition 3.9. The generalized Dynkin diagram of an arithmetic root system
�χ,E is a nondirected graph Dχ,E with the following properties:

1) There is a bijective map φ from I = {1, 2, . . . , d} to the set of vertices of
Dχ,E .

2) For all 1 ≤ i ≤ d, the vertex φ(i) is labelled by qii.
3) For all 1 ≤ i, j ≤ d, the number nij of edges between φ(i) and φ(j) is

either 0 or 1. If i = j or qijqji = 1 then nij = 0, otherwise nij = 1 and
the edge is labelled by q̃ij = qijqji for 1 ≤ i < j ≤ n.

An arithmetic root system is called connected provided the corresponding gen-
eralized Dynkin diagram Dχ,E is connected. All the connected arithmetic root sys-
tems are classified and the corresponding generalized Dynkin diagrams are listed
in [20–22].

3.4. Classification results. In this subsection, we provide a classification
of finite-dimensional Nichols algebras of diagonal type in G

G
YDΦ. This also leads

to a complete classification of connected finite-dimensional pointed coquasi-Hopf
algebras of diagonal type.

Since Nichols algebras in twisted Yetter-Drinfeld categories G

G
YDΦ are nonas-

sociative algebras, the structures of these algebras depend on G and the 3-cocycle
Φ on G. We will call G the base group of B(V ). An important method is to change
the base groups of Nichols algebras.

Definition 3.10. Let B(V ) and B(U) be Nichols algebras in G
GYDΦ and H

HYDΨ

respectively with dim V = dimU = l. We say B(V ) is isomorphic to B(U) if there
is a Zl-graded linear isomorphism F : B(V ) → B(U) which preserves the multipli-
cation and comultiplication.

Lemma 3.11. [28, Lemma 4.4] Suppose V ∈ G
GYDΦ and U ∈ H

HYDΨ. Let G′

and H ′ be support groups of V and U respectively. If there are a linear isomorphism
F : V → U and a group epimorphism f : G′ → H ′ such that:

δ ◦ F = (f ⊗ F ) ◦ δ,(3.15)

F (g � v) = f(g) � F (v),(3.16)

Φ|G′ = f∗Ψ|H′(3.17)

for any g ∈ G′, v ∈ V. Then B(V ) is isomorphic to B(U).

If (F, f) is an isomorphism from B(V ) to B(U) as in Lemma 3.11, then we say
B(V ) is isomorphic to B(U) through the group morphism f.
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In the following of this subsection, suppose G = Zm1
×· · ·×Zmn

= 〈g1〉×· · · 〈gn〉
and G = Zm1

× · · · × Zmn
= 〈g1〉 × · · · 〈gn〉 where mi = m2

i for 1 ≤ i ≤ n. Let

(3.18) π : kG → kG, gi �→ gi, 1 ≤ i ≤ n

be the canonical epimorphism. Observe that π has a section

(3.19) ι : kG → kG,

n∏
i=1

giji �→
n∏

i=1

g
ij
i

which is not a group morphism. Let δL and � be the comodule and module structure
maps of V ∈ G

G
YDΦ. Define

ρL : V → kG⊗ V, ρL = (ι⊗ id)δL

�: kG⊗ V → V, g � Z = π(g) � Z

for all g ∈ G and Z ∈ V . Then

Lemma 3.12. Ṽ := (V, ρL,�) is an object in G
GYDπ∗(Φ).

Moreover we have

Proposition 3.13. For any Nichols algebra B(V ) ∈ G

G
YDΦ, the Nichols algebra

B(Ṽ ) ∈ G
GYDπ∗(Φ) is isomorphic to B(V ). Moreover, if B(V ) is of diagonal type,

then B(Ṽ ) is twist equivalent to a usual Nichols algebra.

To summarize so far, we have found the route in Figure I of transforming a
nonassociative Nichols algebra to a usual one:

B(V ) ∈ G

G
YDΦ Original diagonal Nichols algebra

�
B(V ) ∼= B(Ṽ ) ∈ G

GYDπ∗(Φ) Lemma 3.11+Lemma 3.12

�
Proposition 2.5

B(Ṽ ) is twisted equivalent to a usual Nichols algebra B(V )′

Figure 1

According to this diagram, every diagonal Nichols algebra B(V ) ∈ G

G
YDΦ cor-

responds to a usual diagonal Nichols algebra, denoted by B(V )′ for convenience, in
a canonical way.

Definition 3.14. The arithmetic root system of B(V ) is defined to be that
of B(V )′. That is, �(B(V ))χ,E := �(B(V ′))χ,E by the prescribed notations in
Subsection 3.3. In particular, the root system�(B(V )) of B(V ) equals to�(B(V )′).

In order to complete the classification of diagonal Nichols algebras, we need to
find a return trip of the above diagram. To this end, we shall answer this question:
For a usual diagonal type Nichols algebra B with arithmetic root system, when is
B gotten from a Nichols algebra B(V ) ∈ G

G
YDΦ?

Firstly we observe the following fact.
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Lemma 3.15. [28, Lemma 4.9] Let B(Ṽ ) ∈ G
GYDπ∗(Φ) be a Nichols algebra of

diagonal type and {Yi|1 ≤ i ≤ m} be a standard basis of Ṽ . Then B(Ṽ ) is isomorphic

to a Nichols algebra in G

G
YDΦ through π if and only if

(3.20) gmi
i � Yj = Yj , 1 ≤ i ≤ n, 1 ≤ j ≤ m.

We point out that the result of Lemma 3.15 can also be deduced from [8,
Proposition 4.3]. Now fix an usual Nichols algebra of diagonal type B(V )′ ∈ G

GYD
with support group G. According to Figure I, we need to answer the following
question:

When is B(V )′Ja isomorphic to a Nichols algebra in G

G
YDΦa through

π? (Question (�))
Let {Xi|1 ≤ i ≤ m} be a standard basis of V. Assume that

δ′L(Xi) = hi ⊗Xi, gk �′ Xj = qkjXj

for 1 ≤ i, j ≤ m, 1 ≤ k ≤ n, hi ∈ G and qkj ∈ k
∗, where δ′L (resp. �′) is

the comodule (resp. module) structure map of B(V )′ ∈ G
GYD. So there are 0 ≤

xkj , sik < mk such that

qkj = ζ
xkj
mk , hi =

n∏
k=1

gsikk

for 1 ≤ i, j ≤ m and 1 ≤ k ≤ n. Let X = (xij)n×m. By assumption, the support
group GB(V )′ = G, {hi|1 ≤ i ≤ m} generate the group G, so there are tjl ∈ N such
that

gj =
m∏
l=1

h
tjl
l , 1 ≤ j ≤ n.

By S and T, we denote the matrices (sik)m×n and (tjl)n×m. It is obvious that

(3.21) TS ≡

⎛⎜⎜⎝
1 (mod m1) 0 (mod m1) · · · 0 (mod m1)
0 (mod m2) 1 (mod m2) · · · 0 (mod m2)

· · · · · · · · · · · ·
0 (mod mn) 0 (mod mn) · · · 1 (mod mn)

⎞⎟⎟⎠ .

With these notations, we can give the answer to Question (�) now.

Proposition 3.16. [28, Proposition 4.10] The twisting B(V )′Ja is isomorphic

to a Nichols algebra in G

G
YDΦa through π if and only if the following congruence

equalities hold:

m∑
j=1

xijtlj ≡ 0 (mod mi), 1 ≤ l < i ≤ n,(3.22)

m∑
j=1

xijtij ≡ ai (mod mi), 1 ≤ i ≤ n,(3.23)

(
m∑
j=1

xijtlj)ml ≡ miail (mod miml), 1 ≤ i < l ≤ n.(3.24)

Proposition 3.17. [28, Corollary 4.12] For the Nichols algebra B(V )′ ∈ G
GYD,

there is at most one a ∈ A such that B(V )′Ja is isomorphic to a Nichols algebra in
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G

G
YDΦa through π. Moreover, this a exists if and only if the Equations (3.22) hold

and in this case a can be taken in the following way:

(3.25) ai ≡
m∑
j=1

xijtij (mod mi); ail ≡
ml

mi

m∑
j=1

xijtlj (mod ml); ailt = 0

for 1 ≤ i ≤ n, 1 ≤ i < l ≤ n and 1 ≤ i < l < t ≤ n.

Now we are in the position to find the “return trip” in Figure II.

B(V ) ∈ G

G
YDΦa

� Eq. (3.22) satisfy

B(V )′Ja ∈ G
GYDπ∗(Φa)

By Eq. (3.25), find Ja
�

Usual Nichols algebra B(V )′ ∈ G
GYD

Figure II

Next we can give a complete classification of Nichols algebras of diagonal type
with arithmetic root systems in G

G
YDΦ. Suppose (�, χ, E) is an arithmetic root

system, Dχ,E is the Dynkin diagram of (�, χ, E). Up to twist equivalence, (�, χ, E)
is uniquely determined by Dχ,E . Fix a Dynkin diagram with m vertices, we call

{qii = χ(ei, ei), q̃ij = χ(ei, ej)χ(ej , ei)|1 ≤ i, j ≤ m}
the structure constants of Dχ,E .

Definition 3.18. Let G = Zm1
× · · · × Zmn

be the abelian group defined as
above and set mi := m2

i for 1 ≤ i ≤ n. Suppose Dχ,E is a Dynkin diagram of an
arithmetic root system �χ,E and (qii, q̃ij) is the set of structure constants. Assume
that there exist parameter matrices S and X satisfying

1. S = (sij)m×n is a matrix with integer entries 0 ≤ sij < mi for all 1 ≤
i ≤ m, 1 ≤ j ≤ n such that there exists a matrix T = (tij)n×m satisfying
(3.21).

2. X = (xij)n×m with integer entries 0 ≤ xij < mi for all 1 ≤ i ≤ m, 1 ≤
j ≤ n such that qii =

∏n
k=1 ζ

sikxki
mk

, q̃ij =
∏n

k=1 ζ
sikxkj+sjkxki
mk , and satisfy

Equations (3.22).

Then we call D = D(Dχ,E ,S,X) a root datum over G, and �χ,E the arithmetic
root system of D.

For a fixed root datum D = D(Dχ,E ,S,X) over G, define a sequence a ∈ A

through Equations (3.25). Now we can define a Nichols algebra B(VD) ∈ G
GYDπ∗(Φa)

in the following way: Let VD be the Yetter-Drinfeld module in G
GYDπ∗(Φa) with a

standard basis {Xi|1 ≤ i ≤ m} such that

δL(Xi) =
n∏

k=1

gsikk ⊗Xi, gi � Xj = ζxij
mi

Ja(gi,
∏n

k=1 g
sik
k )

Ja(
∏n

k=1 g
sik
k , gi)

Xj .

Theorem 3.19. [28, Theorem 4.14]
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(1) The Nichols algebra B(VD) is isomorphic to a Nichols algebra of diagonal

type with arithmetic root system in G

G
YDΦa through the group epimorphism

π : G → G.
(2) Suppose B(V ) is a Nichols algebra of diagonal type with arithmetic root

system in G

G
YDΦa and the support group is G, then there exists a root

datum D over G such that B(VD) ∼= B(V ) through the group epimorphism
π : G → G.

By this theorem, we know that the Nichols algebra B(VD) is isomorphic to a

unique Nichols algebra in G

G
YDΦa . For convenience, this Nichols algebra is denoted

by B(D) and M(D) = B(D)#kG.
With the previous preparation, now we are in the position to give the clas-

sification result of connected finite-dimensional pointed coquasi-Hopf algebras of
diagonal type. Suppose that M is a finite-dimensional connected pointed coquasi-
Hopf algebras of diagonal type with associator Φa, G = G(M) andR the coinvariant

subalgebra of M. Note that R =
∑

i≥0 Ri is a graded Hopf algebras in G

G
YDΦa . In

fact we have

Proposition 3.20. [28, Lemma 4.1, Proposition 5.1] Φa is an abelian 3-cocycle

on G = G(M), and R ∼= B(R1) is a Nichols algebra in G

G
YDΦa .

Combining Theorem 3.19 and Proposition 3.20, we obtain our main classifica-
tion result.

Theorem 3.21. [28, Theorem 5.7] Keep the notations as before. We have

(1). The coquasi-Hopf algebra M(D) is a connected coradical graded pointed
coquasi-Hopf algebra of diagonal type over the group G. Moreover, M(D)
is finite-dimensional if and only if the heights of all restricted Poincare-
Birkhoff-Witt generators of B(D) are finite.

(2). Any finite-dimensional connected coradical graded pointed coquasi-Hopf
algebra of diagonal type over G is isomorphic to a M(D) for some D.

In [3, Conjecture 1.4], Andruskiewitch-Schneider conjectured that every finite-
dimensional pointed Hopf algebras over k is generated by group-like and skew-
primitive elements. This is the so called generation in degree one problem, which
plays an important role on the classification of pointed Hopf algebras. It is true in
many cases, see [6]. This conjecture was generalized to finite-dimensional pointed
coquasi-Hopf algebras or even to pointed finite tensor categories [16].

Corollary 3.22. [28, Corollary 5.8] Suppose M is a finite-dimensional pointed
coquasi-Hopf algebras of diagonal type, then M is generated by group-like and skew-
primitive elements.

To conclude this section, we remark that there are many new classes of genuine
finite-dimensional coradically graded pointed coquasi-Hopf algebras constructed in
[27,28] explicitly.

4. Finite quasi-quantum groups of nondiagonal type: A first attempt

In this section, we will present some classification results of nondiagonal finite
quasi-quantum groups over abelian groups obtained in [33]. This is an initial step
to go further beyond [27,28].
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In the rest of this section, let G be a finite abelian group and Φ be a nonabelian
3-cocycle on G. Similar to the diagonal case, the crux is a complete understanding of
the Nichols algebras of all V ∈ G

GYDΦ. To this end, in principle we need to develop
a theory for the Nichols algebras of semisimple twisted Yetter-Drinfeld modules.
The Hopf version of such a theory was developed in [4,23]. However, at present
it seems not easy to extend this theory to the quasi-Hopf case directly. As a trial
step, firstly we study the Nichols algebras of semisimple twisted Yetter-Drinfeld
modules with few summands. It turns out that if the number of summands is less
than or equal to 2, then we are able to make a connection from this to the diagonal
case. The main idea is to consider the support groups of such easy Yetter-Drinfeld
modules and carry out the base group change as in our previous works [27, 28].
More precisely, if V ∈ G

GYDΦ is nondiagonal and has at most 2 simple summands,
then its support group GV is either a cyclic group or the direct product of two
cyclic groups. Moreover, the Nichols algebra B(V ) ∈ G

GYDΦ is essentially nothing

other than B(V ) ∈ GV

GV
YDΦ|GV . In this situation, all 3-cocycles on GV are abelian

and then [27,28] can be applied.
Our first main result is a complete clarification of the Nichols algebra B(V )

when V is a simple twisted Yetter-Drinfeld module of nondiagonal type. In partic-
ular, we provide an explicit necessary and sufficient condition on V for B(V ) to be
finite-dimensional. The same idea and process can be applied to B(V ) when V is
a direct sum of 2 simple twisted Yetter-Drinfeld modules. As this will not provide
more insights for our ultimate aim, we do not include a detailed discussion of this
case. Instead, we present several simple examples to offer the reader some flavor.
Surprisingly, the result on B(V ) with V simple is already enough for us to achieve
half of our final aim. Our second main result is a complete classification of finite-
dimensional coradically graded pointed coquasi-Hopf algebras over abelian groups
of odd order. The key observation is that B(V ) ∈ G

GYDΦ is infinite-dimensional
for any simple nondiagonal twisted Yetter-Drinfeld module V if the order of G is
odd. As an application, we also prove that any pointed finite tensor category over
an abelian group of odd order is tensor generated by objects of length 2, which
partially confirms the generation conjecture [16, Conjecture 5.11.10.] of pointed
finite tensor categories due to Etingof, Gelaki, Nikshych and Ostrik.

4.1. The Nichols algebras of simple twisted Yetter-Drinfeld modules.
In this subsection we focus on the Nichols algebras of nondiagonal Yetter-Drinfeld
modules. Note that if Φ is an abelian 3-cocycle on G, then each object of GGYDΦ is of

diagonal type. So nondiagonal Yetter-Drinfeld modules appear in G
GYDΦ only if Φ is

nonabelian. The following proposition is an immediate consequence of Propositions
2.4 and (2.3).

Proposition 4.1. Suppose that G is a cyclic group Zm or a direct product of
two cyclic groups, say Zm1

× Zm2
, then all the 3-cocycles on G are abelian.

Proposition 4.2. [33, Proposition 3.16] Let G be a finite abelian group, Φ

a 3-cocycle on G. Suppose that B(V ) is a Nichols algebra in G
GYDΦ, where V

is a simple Yetter-Drinfeld module, or a direct sum of two simple Yetter-Drinfeld
modules. Then B(V ) is isomorphic to a Nichols algebra of diagonal type B(V ′) in
H
HYDΨ, where H = GV and Ψ = Φ|H .

According to this proposition, we can apply the theory of Nichols algebras
of diagonal type to study the Nichols algebras of simple twisted Yetter-Dinfeld



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

190 HUA-LIN HUANG, GONGXIANG LIU, YUPING YANG, AND YU YE

modules, or of a direct sum of two simple twisted Yetter-Drinfeld modules. If
V = Vg is a simple object in G

GYDΦ, then we denote gV = g.

Proposition 4.3. [33, Proposition 3.18] Let G be a finite abelian group, Φ a
3-cocycle on G. Suppose V is a simple Yetter-Drinfeld module of nondiagonal type
in G

GYDΦ, gV = g. Then B(V ) is finite-dimensional if and only if V is one of the
following two cases:

(C1) g � v = −v for all v ∈ V ;
(C2) dim(V ) = 2 and g � v = ζ3v for all v ∈ V , here ζ3 is a 3-rd primitive root

of unity.

There exist Yetter-Drinfeld modules satisfying conditions C1 or C2, see [33,
Example 3.19-3.20].

4.2. Finite quasi-quantum groups over abelian groups of odd order.
In this subsection we provide a complete classification of finite-dimensional coradi-
cally graded pointed coquasi-Hopf algebras over abelian groups of odd order. This
is also applied to the classification theory of pointed finite tensor categories. In
particular, we give a partial answer to the following

Conjecture 4.4. [16, Conjecture 5.11.10.] A pointed finite tensor category is
tensor generated by objects of length 2.

This conjecture is due to Etingof, Gelaki, Nikshych and Ostrik, hence will be
called EGNO’s conjecture in the following. It is a natural generalization of the
well known Andruskiewitsch-Schneider conjecture [3, Conjecture 1.4] due to the
following proposition.

Proposition 4.5. [33, Proposition 4.10] Suppose that M is a finite-
dimensional pointed coquasi-Hopf algebra. Then M is generated by group-like and
skew-primitive elements if and only if comod(M) is tensor generated by objects of
length 2.

Now we need to get more information of Nichols algebras in G
GYDΦ. Applying

linear representation theory of G, we prove the following important proposition.

Proposition 4.6. For each simple object V in G
GYDΦ, we have dim(V ) | |G|.

Note that if |G| is odd, the order of an element in G is also odd, hence there
is not a simple object satisfying condition C1 of Proposition 4.3. According to
Proposition 4.6, dim(V ) | |G| implies dim(V ) is also odd, and hence V doesn’t
satisfy condition C2 of Proposition 4.3. So we have the following proposition.

Proposition 4.7. Let G be a finite abelian group of odd order and Φ be a
3-cocycle on G. Suppose that V ∈ G

GYDΦ is not diagonal. Then B(V ) is infinite-
dimensional.

This proposition implies that if |G| is odd, then every finite-dimensional Nichols

algebra in G
GYDΦ must be of diagonal type. So according to Proposition 3.20, we

can easily prove the following theorem.

Theorem 4.8. [33, Theorem 4.11] Suppose that R = ⊕i≥0R[i] is a finite-

dimensional connected coradically graded braided Hopf algebra in G
GYDΦ, where G

is an abelian group of odd order and Φ is a 3-cocycle on G. Then R = B(R[1]).
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Combining Proposition 4.5 and Theorem 4.8, we obtain a partial answer to
Conjecture 4.4.

Theorem 4.9. [33, Theorem 4.2] Suppose that C is a pointed finite tensor
category with G(C) an abelian group of odd order. Then C is tensor generated by
objects of length 2.

With the help of Theorem 4.8, we achieve the classification of coradically graded
pointed coquasi-Hopf algebras and that of coradically graded pointed finite tensor
categories over abelian groups of odd order. Here a tensor category C is said to be
coradically graded if C is equivalent to the category of comodules over a coradically
graded coquasi-Hopf algebra.

Let Δχ,E be an arithmetic root system. For each positive root α ∈ Δ, define
qα = χ(α, α). Then the height of α is defined by

(4.1) ht(α) =

{
|qα|, if qα �= 1 is a root of unity;
∞, otherwise.

A function χ : G −→ k∗ is called a quasi-character associated to a 2-cocycle ω
on G if for all f, g ∈ G,

(4.2) χ(f)χ(g) = ω(f, g)χ(fg), χ(1) = 1.

It is clear that there is a quasi-character associated to ω if and only if ω is

symmetric. Recall that for a fixed 3-cocycle Φ on G, {Φ̃g|g ∈ G} gives 2-cocycles
on G.

Definition 4.10. Let χ1, · · · , χn be quasi-characters of G associated to Φ̃g1 ,

· · · , Φ̃gn respectively. We say the series (χ1, · · · , χn) is of finite type if there is an
arithmetic root system Δχ,E of rank n such that:

• χi(gj)χj(gi) = qijqji, χi(gi) = qii for all 1 ≤ i, j ≤ n. Here qij = χ(ei, ej)
for ei, ej ∈ E.

• ht(α) < ∞ for all α ∈ Δ.

For a series of quasi-characters (χ1, · · · , χn) of finite type associated to Φ̃g1 ,

· · · , Φ̃gn , we can attach to it a twisted Yetter-Drinfeld module V (χ1, · · · , χn) with
a standard basis {X1, · · · , Xn} such that gi �Xj = χj(gi)Xj and δL(Xi) = gi ⊗Xi

for all 1 ≤ i, j ≤ n. Now we can give the classification result.

Theorem 4.11. [33, Theorem 4.13] Let G be a finite abelian group of odd order,
Φ a 3-cocycle on G.

(1) If (χ1, · · · , χn) is a series of quasi-characters of finite type associated to

the 2-cocycles Φ̃g1 , · · · , Φ̃gn , then B(V (χ1, · · · , χn)) is a finite-dimensional

Nichols algebra in kG
kGYDΦ.

(2) Suppose that C is a coradically graded pointed finite tensor category such
that G(C) = G and the associator is Φ. Then there exists a series of quasi-

characters (χ1, · · · , χn) of finite type associated to Φ̃g1 , · · · , Φ̃gn such that

C ∼= comod(B(V (χ1, · · · , χn))#kG).

5. Some further problems

Finally, we propose some further research problems which are natural exten-
sions of our previous works.
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Problem 1. Pursuit a complete classification of finite-dimensional coradically
graded pointed coquasi-Hopf algebras of nondiagonal type over abelian groups.
Thanks to [33], it remains to consider those over even order abelian groups. More-
over, according to some examples we worked out, it is quite possible that the
Nichols algebra of a twisted Yetter-Drinfeld module with at least 3 nondiagonal
simple summands is infinite-dimensional. This implies that nontrivial finite quasi-
quantum groups of nondiagonal type over abelian groups are very rare. Thus, a
complete classification seems possible.

Problem 2. Consider pointed finite tensor categories and finite quasi-quantum
groups over nonabelian groups. To the best of our knowledge, there seems not
even a single example of finite-dimensional connected pointed coquasi-Hopf algebra
with nontrivial associator over nonabelian groups in the literature. In addition,
the cohomology of finite nonabelian groups seems much more complicated. For
some easy classes of nonabelian groups, e.g. the semi-direct product of two cyclic
groups, the idea of Section 2 may be applied to obtain unified and explicit 3-
cocycle formulas. Finite quasi-quantum groups over such groups may be workable.
In pursuit of a general theory as the abelian case, it seems worthwhile to develop the
general theory of Nichols algebras of semisimple twisted Yetter-Drinfeld modules,
as well as the related Weyl groupoids and arithmetic root systems.

Problem 3. Consider the lifting or deformation theory of coradically graded
finite quasi-quantum groups. As far as we know, the lifting of (co)quasi-Hopf alge-
bras was considered only in [5,15]. There are not many results in this direction.
The problem sees very complicated and challenging. An obvious difficulty lies in
associators for which there is no suitable tools to control yet. One may try to apply
the deformation and related cohomology theory of quasi-quantum groups. We also
wonder if there is a nice theory of cocycle deformations of quasi-quantum groups.

References

[1] Nicolás Andruskiewitsch, On finite-dimensional Hopf algebras, Proceedings of the Inter-
national Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 2014,
pp. 117–141. MR3728608

[2] Nicolás Andruskiewitsch and Hans-Jürgen Schneider, Pointed Hopf algebras, New directions
in Hopf algebras, Math. Sci. Res. Inst. Publ., vol. 43, Cambridge Univ. Press, Cambridge,
2002, pp. 1–68, DOI 10.2977/prims/1199403805. MR1913436

[3] Nicolás Andruskiewitsch and Hans-Jürgen Schneider, On the classification of finite-
dimensional pointed Hopf algebras, Ann. of Math. (2) 171 (2010), no. 1, 375–417, DOI
10.4007/annals.2010.171.375. MR2630042

[4] Nicolás Andruskiewitsch, István Heckenberger, and Hans-Jürgen Schneider, The Nichols al-
gebra of a semisimple Yetter-Drinfeld module, Amer. J. Math. 132 (2010), no. 6, 1493–1547.
MR2766176

[5] Iván Ezequiel Angiono, Basic quasi-Hopf algebras over cyclic groups, Adv. Math. 225 (2010),
no. 6, 3545–3575, DOI 10.1016/j.aim.2010.06.013. MR2729015

[6] Iván Angiono, On Nichols algebras of diagonal type, J. Reine Angew. Math. 683 (2013),
189–251, DOI 10.1515/crelle-2011-0008. MR3181554

[7] Iván Angiono and César Galindo, Pointed finite tensor categories over abelian groups, Inter-
nat. J. Math. 28 (2017), no. 11, 1750087, 18, DOI 10.1142/S0129167X17500872. MR3714361

[8] Iván Angiono, César Galindo, and Mariana Pereira, De-equivariantization of Hopf alge-
bras, Algebr. Represent. Theory 17 (2014), no. 1, 161–180, DOI 10.1007/s10468-012-9392-9.
MR3160718
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